Deploy Alibaba's state-of-the-art models optimized for coding, technical documentation, and analytical tasks. Best-in-class performance for developer teams.
def optimize_database_query(table_name, conditions): """ AI-generated query optimization using Qwen 2.5 Automatically creates indexes and optimizes joins """ if analyze_query_complexity(conditions) > 0.7: indexes = suggest_indexes(table_name, conditions) for idx in indexes: create_index(table_name, idx['columns']) optimized_query = build_optimized_query( table=table_name, conditions=conditions, use_parallel=True ) return { 'query': optimized_query, 'estimated_time': estimate_execution_time(optimized_query), 'suggestions': get_optimization_tips(optimized_query) }
✓ Query optimized: 87% performance improvement
→ Suggested indexes created successfully
0.5B-72B
Model Sizes
128K
Context Window
#1 Code
HumanEval Benchmark
Apache 2.0
Open License
Qwen 2.5 consistently outperforms other open models on technical benchmarks
Ultra-light edge deployment
• Mobile devices
• IoT applications
• Real-time inference
Balanced performance
• Code completion
• Documentation
• Analysis tasks
Recommended for enterprise
• Complex coding
• Architecture design
• Code review
Maximum capability
• Research tasks
• System design
• Full codebase analysis
See how Qwen 2.5 excels at complex coding tasks across multiple languages
from fastapi import FastAPI, HTTPException, Depends
from sqlalchemy.orm import Session
from typing import List, Optional
import asyncio
from datetime import datetime
app = FastAPI(title="Enterprise API")
@app.post("/api/v1/process-batch")
async def process_batch_data(
batch_id: str,
items: List[dict],
priority: Optional[str] = "normal",
db: Session = Depends(get_db)
):
"""
Process batch data with automatic optimization
and parallel execution for large datasets
"""
# Validate batch size
if len(items) > 10000:
# Automatically split into chunks
chunks = [items[i:i+1000]
for i in range(0, len(items), 1000)]
# Process in parallel
tasks = [process_chunk(chunk, batch_id, db)
for chunk in chunks]
results = await asyncio.gather(*tasks)
return {
"batch_id": batch_id,
"processed": sum(r["count"] for r in results),
"duration": calculate_duration(),
"optimization": "parallel_processing"
}
# Standard processing for smaller batches
return await process_standard(items, batch_id, db)
interface DataGridProps {
data: T[];
columns: ColumnDef[];
onSort?: (field: keyof T, order: 'asc' | 'desc') => void;
virtualized?: boolean;
pageSize?: number;
}
export function DataGrid>({
data,
columns,
onSort,
virtualized = true,
pageSize = 50
}: DataGridProps) {
const [sortConfig, setSortConfig] = useState<{
field: keyof T;
order: 'asc' | 'desc';
} | null>(null);
const virtualizer = useVirtualizer({
count: data.length,
getScrollElement: () => parentRef.current,
estimateSize: () => 48,
overscan: 5,
});
const sortedData = useMemo(() => {
if (!sortConfig) return data;
return [...data].sort((a, b) => {
const aVal = a[sortConfig.field];
const bVal = b[sortConfig.field];
return sortConfig.order === 'asc'
? aVal > bVal ? 1 : -1
: aVal < bVal ? 1 : -1;
});
}, [data, sortConfig]);
// Render optimized virtual grid...
-- Optimized query with automatic index suggestions
WITH user_metrics AS (
SELECT
u.user_id,
u.created_at,
COUNT(DISTINCT s.session_id) as session_count,
SUM(s.duration) as total_duration,
AVG(s.duration) as avg_duration,
FIRST_VALUE(s.started_at) OVER (
PARTITION BY u.user_id
ORDER BY s.started_at
) as first_session
FROM users u
LEFT JOIN sessions s ON u.user_id = s.user_id
WHERE s.started_at >= CURRENT_DATE - INTERVAL '30 days'
GROUP BY u.user_id, u.created_at
),
engagement_score AS (
SELECT
user_id,
CASE
WHEN session_count > 20 AND avg_duration > 300 THEN 'high'
WHEN session_count > 10 THEN 'medium'
ELSE 'low'
END as engagement_level
FROM user_metrics
)
SELECT * FROM engagement_score
-- Suggested indexes:
-- CREATE INDEX idx_sessions_user_date ON sessions(user_id, started_at);
-- CREATE INDEX idx_sessions_duration ON sessions(duration);
use tokio::sync::{mpsc, RwLock};
use std::sync::Arc;
use serde::{Deserialize, Serialize};
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct CacheEntry {
value: T,
expires_at: i64,
access_count: u64,
}
pub struct DistributedCache {
storage: Arc>>>,
capacity: usize,
eviction_tx: mpsc::Sender,
}
impl DistributedCache {
pub async fn get(&self, key: &str) -> Option {
let mut storage = self.storage.write().await;
if let Some(entry) = storage.get_mut(key) {
if entry.expires_at > chrono::Utc::now().timestamp() {
entry.access_count += 1;
return Some(entry.value.clone());
} else {
// Async cleanup of expired entry
let _ = self.eviction_tx.send(key.to_string()).await;
}
}
None
}
pub async fn set(&self, key: String, value: T, ttl: i64) {
// LRU eviction if at capacity
if self.storage.read().await.len() >= self.capacity {
self.evict_least_recently_used().await;
}
// Implementation continues...
}
}
Advanced features that make Qwen 2.5 ideal for technical teams
Process entire codebases, long documents, and complex conversations without losing context
Strong performance across programming and natural languages for global teams
Engineered for fast inference with support for quantization and optimization
Deploy Qwen 2.5 with your existing development workflow
# Install with Docker
docker pull llmdeploy/qwen:2.5-32b
# Or use our Python SDK
pip install sovereign-ai
# Initialize and run
from sovereign_ai import Qwen25
model = Qwen25("32B")
response = model.generate(
prompt="Create a FastAPI endpoint for user auth",
max_tokens=1000
)
IDE Plugins
VS Code, JetBrains, Vim, Emacs
Languages
Python, JS/TS, Go, Rust, Java
Deployment
Kubernetes, Docker, Bare Metal
Monitoring
Prometheus, Grafana, OpenTelemetry
Drop-in replacement for existing OpenAI integrations
# Simply change your base URL
client = OpenAI(
base_url="https://your-deployment.com/v1",
api_key="your-sovereign-ai-key"
)
Join leading tech companies using Qwen 2.5 for their development workflows